• Home
  • Statistics▾
    • Data Types
    • Missing Values
    • Outliers
    • Confusion Matrix
    • Pre-processing
    • Exploratory Data Analysis
    • Bias-Variance Tradeoff
    • Train-Test split
  • Python▾
    • Importing data
    • Heatmap
  • Supervised▾
    • Decision Trees
    • Naive Bayes
    • Support Vector Machines
    • Logistic Regression
    • Ensemble Models
    • Random Forest
  • Unsupervised▾
    • Principal Component Analysis
  • Time Series▾
    • Importing Time Series data
    • Basic conceptss
    • Time Series Components
    • Exponential Smoothing Techniques
    • Time series Cross-validation & Forecasting Accuracy
    • ARIMA/SARIMA with Python
  • Deep Learning▾
    • Deep Learning Basics
    • Building a Deep Learning Model
  • Privacy Policy
  • About Me

Data Science Simplified

Learning the Machine Learning, in a Human-friendly Way

Supervised

Supervised learning model learns from labeled data. Supervised learning problem can be a classification task or a regression task.
Here are the links to blog posts on Supervised Learning:

  • Decision Trees
  • Understanding Naive Bayes using simple examples
  • Support Vector Machines (SVM)
  • Logistic Regression
  • Ensemble Models
  • Random Forest
  • Understanding Naive Bayes using simple examples
Home
Subscribe to: Comments (Atom)

Popular Posts

  • Confusion Matrix, Accuracy, Precision, Recall, F score Explained with Intuitive Visual Examples
  • The Chi-Square Test Explained with Examples: A Beginner's Guide
  • ARIMA/SARIMA with Python: Understand with Real-life Example, Illustrations and Step-by-step Descriptions
  • Components of Time Series: A Beginner's Visual Guide
  • Train-Test split and Cross-validation: Visual Illustrations & Examples

Follow me on YouTube

Total Pageviews

Blog Archive

  • ▼  2025 (3)
    • ▼  September (3)
      • Tricky Data Science Interview Questions (With Answ...
      • Sampling Methods
      • Market Basket Analysis made simple
  • ►  2023 (9)
    • ►  March (9)
  • ►  2021 (1)
    • ►  September (1)
  • ►  2020 (2)
    • ►  November (1)
    • ►  July (1)
  • ►  2019 (14)
    • ►  October (7)
    • ►  September (1)
    • ►  January (6)
  • ►  2018 (18)
    • ►  December (4)
    • ►  November (14)

Labels

Statistics (24) Supervised Learning (5) timeseries (5) Python (3) Deep Learning (2) NLP (2) Natural Language Processing (2) Unsupervised Learning (2) Sentiment Analysis and Topic Modelling (1) Word Cloud (1) free ebook (1)